Utopia (fourier + Venturis small caps)¹

Roman	ABCDEFGHIJKLMNOPQRSTUVWXYZ ÄÖÜ
Kursiv	ABCDEFGHIJKLMNOPQRSTUVWXYZ ÄÖÜ

Mathe ABCDEFGHIJKLMNOPQRSTUVWXYZ ΓΔΘΛΞΠΣΥΦΨΩ

roman abcdefghijklmnopqrstuvwxyz äöüß 1234567890?!+kursiv abcdefghijklmnopqrstuvwxyz äöüß 1234567890?!+-

mathe abcdefghijklmnopqrstuvwxyz αβγδεζηθικλμνξπρστυφχψω εθωφρς

Kapitälchen abcdefghijklmnoporstuvwxyz äöüss 1234567890?!+-

Normal	Mathe	Normal	$QJf \alpha \beta \gamma \Gamma \Gamma \beta_a b_a B_a \partial_a \omega_a \nu \nu w y g$
\mathrm	Mathe	Fett(\mathbf)	$\mathbf{QJf}\alpha\beta\gamma\Gamma\Gamma\ \beta_{\mathbf{a}}\mathbf{b_{a}}\mathbf{B_{a}}\partial_{\mathbf{a}}\omega_{\mathbf{a}}\ \nu\mathbf{vwyg}$
Fett	Mathe	Fett(\boldsymbol)	$QJflphaeta\gamma\Gamma\Gammaeta_ab_aB_a\partial_a\omega_avvwyg$
\mathbf	Mathe	Serifenlos (\mathsf)	$QJf \alpha \beta \gamma \Gamma \Gamma \beta_{a} b_{a} B_{a} \partial_{a} \omega_{a} v vwyg$
Kursiv	Mathe	Skript (\mathcal)	ARCDEFG LNRZ ℓ
\mathnormal	Mathe	Tafel (\mathbb)	ABCDEFG LNRZ k
Fett+Kursiv	Mathe	Fett(\boldmath)	$A = \sum_{n=1}^{N} \alpha_n + \partial T/\partial r$
\boldsymbol	$M\alpha\theta\epsilon$	Text ← Math	T-T Γ T - Γ xx-x x - $x\pi \mu \cdot \mu () \cdot (())$
\mathbold	fehlt	Ziffern (Text, Math)	11 22 33 44 55 66 77 88 99 00

Formelbeispiele

Das Gausssche Gesetz der Elektrodynamik vermittelt den Zusammenhang zwischen elektrischem Feld E(r) und Ladungsdichte $\varrho(r)$ über die elektrische Permittivität. Bei makroskopischer Betrachtung gilt

$$\varepsilon_0 \varepsilon_r \nabla E(\mathbf{r}) = \varrho(\mathbf{r}), \tag{1}$$

wobei die Ladungsdichte der Elementarteilchen im Tensor der materialabhängigen relativen Permittivität ε_r berücksichtigt wird.

Die Methode der Fouriertransformation erlaubt eine Definition der MTF als Betrag der normierten Fouriertransformierten des Abbildes einer δ -Funktion

$$MTF = \left| \frac{\mathscr{F}\{s(x)\}}{\mathscr{F}\{s(x)\}|_{\omega_x = 0}} \right| = abs \left(\frac{\int_{-\infty}^{\infty} s(x) e^{i\omega_x x} dx}{\int_{-\infty}^{\infty} s(x) dx} \right).$$
 (2)

Dabei ist s(x) die Punktbildfunktion (PSF) und $\mathcal{F}\{s(x)\}=S(\omega_x)$ die Spektraldichtefunktion

$$S(\omega_x) = \int_{-\infty}^{\infty} s(x) e^{i\omega_0 kx} dx.$$
 (3)

Die lineare Abbildung $f: \mathbb{C}^N \longmapsto \mathbb{C}^N$ mit

$$c_k = F(kf_0) = T_A \sum_{n = -N/2}^{+N/2} f(x_n) e^{-2\pi i \frac{nk}{N}}$$
(4)

für alle $a \in \mathbb{C}^N$ heißt diskrete Fouriertransformation (DFT).

Wären Wurzeln linear, so stünde im Folgenden das Gleichheitszeichen:

$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
 und $\sqrt{\frac{a}{b}} \neq \frac{\sqrt{a}}{\sqrt{b}}$. (5)

 $^{^1}$ \usepackage {fourier} \par \input {t1futs.fd} \DeclareFontShape {T1}{futs}{m}{sc}{<-> yvtrc8t}{} \DeclareFontShape {T1}{futs}{b}{sc}{<-> yvtbc8t}{} \par \par \par